Respuesta :
Answer:
lyrics d  - 1.782
Step-by-step explanation:
Assume Normal Distribution
we have  μ₀ = 40    (from Dullco claims)
And from sample  μ  = 37.8   and standard deviation of  5.4
random sample n = 18
We have to use t-student for testing the hypothesis
and we have a one tail test (left) since Dullco claims : " at least" Â meaning (always bigger or at least ) not different.
Then
t (s) =( μ -  μ₀) / (σ/√n)  ⇒ t (s) = [(37.8  - 40 )* √18 ]/5.4
t (s) = - 1.7284
Using the t-distribution, as we have the standard deviation for the sample, it is found that the test statistic is given by:
d. -1.728
What are the hypothesis tested?
At the null hypothesis, it is tested if the batteries last at least 40 hours, that is:
[tex]H_0: \mu \geq 40[/tex]
At the alternative hypothesis, it is tested if they last less than 40 hours, that is:
[tex]H_1: \mu < 40[/tex]
What is the test statistic?
The test statistic is given by:
[tex]t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}[/tex]
The parameters are:
- [tex]\overline{x}[/tex] is the sample mean.
- [tex]\mu[/tex] is the value tested at the null hypothesis.
- s is the standard deviation of the sample.
- n is the sample size.
In this problem, the parameters are given by:
[tex]\overline{x} = 37.8, \mu = 40, s = 5.4, n = 18[/tex]
Hence:
[tex]t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{37.8 - 40}{\frac{5.4}{\sqrt{18}}}[/tex]
[tex]t = -1.728[/tex]
Hence option d is correct.
To learn more about the t-distribution, you can check https://brainly.com/question/16313918