hat are the wavelengths of peak intensity and the corresponding spectral regions for radiating objects at (a) normal human body temperature of 37°C, (b) the temperature of the filament in an incandescent lamp, 1500°C, and (c) the temperature of the surface of the sun, 5800 K?

Respuesta :

Answer:

(a)

[tex]\lambda _{m}=9.332 \times 10^{-6}m[/tex]

(b)

[tex]\lambda _{m}=1.632 \times 10^{-6}m[/tex]

(c) [tex]\lambda _{m}=4.988 \times 10^{-7}m[/tex]

 

Explanation:

According to the Wein's displacement law

[tex]\lambda _{m}\times T = b[/tex]

Where, T be the absolute temperature and b is the Wein's displacement constant.

b = 2.898 x 10^-3 m-K

(a) T = 37°C = 37 + 273 = 310 K

[tex]\lambda _{m}=\frac{b}{T}[/tex]

[tex]\lambda _{m}=\frac{2.893\times 10^{-3}}{310}[/tex]

[tex]\lambda _{m}=9.332 \times 10^{-6}m[/tex]

(b) T = 1500°C = 1500 + 273 = 1773 K

[tex]\lambda _{m}=\frac{b}{T}[/tex]

[tex]\lambda _{m}=\frac{2.893\times 10^{-3}}{1773}[/tex]

[tex]\lambda _{m}=1.632 \times 10^{-6}m[/tex]

(c) T = 5800 K

[tex]\lambda _{m}=\frac{b}{T}[/tex]

[tex]\lambda _{m}=\frac{2.893\times 10^{-3}}{5800}[/tex]

[tex]\lambda _{m}=4.988 \times 10^{-7}m[/tex]