Respuesta :

Answer:

{6, 8, 10} is a set which represents the side length of a right triangle.

Step-by-step explanation:

In a right triangle:

[tex](Base)^{2}  + (Perpendicular)^{2}   = (Hypotenuse)^{2}[/tex]

Now, in the given triplets:

(a) {4, 8, 12}

Here, [tex](4)^{2}  + (8)^{2}   = 16 + 64  = 80\\\implies H = \sqrt{80}  =  8.94[/tex]

So, third side of the triangle   8.94 ≠ 12

Hence,  {4, 8, 12} is NOT a triplet.

(b) {6, 8, 10}

Here, [tex](6)^{2}  + (8)^{2}   = 36 + 64  = 100\\\implies H = \sqrt{100}  =  10[/tex]

So, third side of the triangle  10

Hence,  {6, 8, 10} is  a triplet.

(c) {6, 8, 15}

Here, [tex](6)^{2}  + (8)^{2}   = 36 + 64  = 100\\\implies H = \sqrt{100}  =  10[/tex]

So, third side of the triangle  10  ≠ 15

Hence,  {6, 8, 15} is  NOT a triplet.

(d) {5, 7, 13}

Here, [tex](5)^{2}  + (7)^{2}   = 25 + 49  = 74\\\implies H = \sqrt{74}  =  8.60[/tex]

So, third side of the triangle  8.60  ≠ 13

Hence, {5, 7, 13} is  NOT a triplet.