contestada

A 1.1 kg block is initially at rest on a horizontal frictionless surface when a horizontal force in the positive direction of an x axis is applied to the block. The force is given by F with arrow(x) = (2.4 − x2)i hat N, where x is in meters and the initial position of the block is x = 0.
(a) What is the kinetic energy of the block as it passes through x = 2.0 m?
(b) What is the maximum kinetic energy of the block between x = 0 and x = 2.0 m?

Respuesta :

Answer with Explanation:

Mass of block=1.1 kg

Th force applied on block is given by

F(x)=[tex](2.4-x^2)\hat{i}N[/tex]

Initial position of the block=x=0

Initial velocity of block=[tex]v_i=0[/tex]

a.We have to find the kinetic energy of the block when it passes through x=2.0 m.

Initial kinetic energy=[tex]K_i=\frac{1}{2}mv^2_i=\frac{1}{2}(1.1)(0)=0[/tex]

Work energy theorem:

[tex]K_f-K_i=W[/tex]

Where [tex]K_f=[/tex]Final kinetic energy

[tex]K_i[/tex]=Initial kinetic energy

[tex]W=Total work done[/tex]

Substitute the values then we get

[tex]K_f-0=\int_{0}^{2}F(x)dx[/tex]

Because work done=[tex]Force\times displacement[/tex]

[tex]K_f=\int_{0}^{2}(2.4-x^2)dx[/tex]

[tex]K_f=[2.4x-\frac{x^3}{3}]^{2}_{0}[/tex]

[tex]K_f=2.4(2)-\frac{8}{3}=2.13 J[/tex]

Hence, the kinetic energy of the block as it passes thorough x=2 m=2.13 J

b.Kinetic energy =[tex]K=2.4x-\frac{x^3}{3}[/tex]

When the kinetic energy is maximum then [tex]\frac{dK}{dx}=0[/tex]

[tex]\frac{d(2.4x-\frac{x^3}{3})}{dx}=0[/tex]

[tex]2.4-x^2=0[/tex]

[tex]x^2=2.4[/tex]

[tex]x=\pm\sqrt{2.4}[/tex]

[tex]\frac{d^2K}{dx^2}=-2x[/tex]

Substitute x=[tex]\sqrt{2.4}[/tex]

[tex]\frac{d^2K}{dx^2}=-2\sqrt{2.4}<0[/tex]

Substitute x=[tex]-\sqrt{2.4}[/tex]

[tex]\frac{d^2K}{dx^2}=2\sqrt{2.4}>0[/tex]

Hence, the kinetic energy is maximum at x=[tex]\sqrt{2.4}[/tex]

Again by work energy theorem , the  maximum kinetic energy of the block between x=0 and x=2.0 m is given by

[tex]K_f-0=\int_{0}^{\sqrt{2.4}}(2.4-x^2)dx[/tex]

[tex]k_f=[2.4x-\frac{x^3}{3}]^{\sqrt{2.4}}_{0}[/tex]

[tex]K_f=2.4(\sqrt{2.4})-\frac{(\sqrt{2.4})^3}{3}=2.48 J[/tex]

Hence, the maximum energy of the block between x=0 and x=2 m=2.48 J