Respuesta :

Answer:

The value of f(x) is - 7  , and  The value of g(x) is 7   .

Step-by-step explanation:

Given as :

The partial fraction fraction decomposition of [tex]\frac{28}{x^{2} - 4}[/tex]

i.e [tex]\frac{28}{x^{2} - 4}[/tex]  = [tex]\frac{f(x)}{x-2}[/tex] +  [tex]\frac{g(x)}{x+2}[/tex]

Or,  [tex]\frac{28}{x^{2} - 4}[/tex]  = [tex]\frac{f(x)\times (x-2) + g(x)\times (x+2)}{x^{2}-4}[/tex]

Or, 28 = f(x) × (x - 2) +  g(x) × (x + 2)

Now, put x = 2

So , 28 = f(x) × (2 - 2) +  g(x) × (2 + 2)

Or, 28 = 0 + 4 × g(x)

∴ g(x) = [tex]\frac{28}{4}[/tex] = 7

Now, put x = - 2

So , 28 = f(x) × ( - 2 - 2) +  g(x) × ( - 2 + 2)

Or, 28 = - 4 × f(x) + g(x) × 0

∴ f(x) = [tex]\frac{28}{ - 4}[/tex] = - 7

Hence The value of f(x) is - 7  , and  The value of g(x) is 7   .  Answer