Respuesta :

Answer:

3.07 seconds is the half-life of the isotope.

Explanation:

Initial mass of an isotope = x

Time taken by the sample, t = 8.40 s

Mass of an isotope decayed= 85.0%

Final mass of an isotope left=(100%-85%)of x= 15.0% of x = 0.15x

Half life of an isotope =[tex]t_{\frac{1}{2}} = ?[/tex]

Formula used :

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope

[tex]\lambda[/tex] = rate constant

[tex]0.15x=x\times e^{-(\frac{0.693}{t_{1/2}})\times 8.40 s}\\\\N=N_o\times e^{-0.693}[/tex]

Now put all the given values in this formula, we get

[tex]t_{1/2]=3.07 s[/tex]

3.07 seconds is the half-life of the isotope.