In which of the tables below x and y are inversely proportional? Find the constant of variation. If there is one. (a) x:y, 3:8, 4:6, 5:4.8, 5.5:4
(b) x:y, 0.1:300, 0.5:60 75:0.4, 100:0.3

Respuesta :

Answer:

The table B represent an inverse variation  

The constant of variation k is 30

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form [tex]y*x=k[/tex] or [tex]y=k/x[/tex]

Verify table A

For x=3, y=8 ----> [tex]k=y*x[/tex] ----> [tex]k=8*3=24[/tex]

For x=4, y=6 ----> [tex]k=y*x[/tex] ----> [tex]k=6*4=24[/tex]

For x=5, y=4.8 ----> [tex]k=y*x[/tex] ----> [tex]k=4.8*5=24[/tex]

For x=5.5, y=4 ----> [tex]k=y*x[/tex] ----> [tex]k=5.5*4=22[/tex]

The values of k are different

therefore

The table A not represent an inverse variation  

Verify table B

For x=0.1, y=300 ----> [tex]k=y*x[/tex] ----> [tex]k=300*0.1=30[/tex]

For x=0.5, y=60 ----> [tex]k=y*x[/tex] ----> [tex]k=60*0.5=30[/tex]

For x=75, y=0.4 ----> [tex]k=y*x[/tex] ----> [tex]k=75*0.4=30[/tex]

For x=100, y=0.3 ----> [tex]k=y*x[/tex] ----> [tex]k=100*0.30=30[/tex]

All the values of k are the same

therefore

The table B represent an inverse variation  

The equation is equal to

[tex]y*x=30[/tex]