Suppose that time invest $10,000 in an account that offers are percent annual interest, compounded quarterly if the investment increases to $12,694.34 in five years, find the annual rate of interest

Respuesta :

The annual rate of interest is 4.80%

Step-by-step explanation:

The formula for compound interest, including principal sum is

[tex]A=P(1+\frac{r}{n})^{nt}[/tex] where:

  • A is the future value of the investment/loan, including interest
  • P is the principal investment amount
  • r is the annual interest rate (decimal)
  • n is the number of times that interest is compounded per unit t
  • t is the time the money is invested or borrowed for

Suppose that time invest $10,000 in an account that offers are percent annual interest, compounded quarterly if the investment increases to $12,694.34 in five years

∵ P = $10,000

∵ A = $12,694.34

∵ n = 4 ⇒ compounded quarterly

∵ t = 5 years

- Substitute all these values in the formula above

∴ [tex]12,694.34=10,000(1+\frac{r}{4})^{4(5)}[/tex]

∴ [tex]12,694.34=10,000(1+\frac{r}{4})^{20}[/tex]

- Divide both sides by 10,000

∴ [tex]1.269434=(1+\frac{r}{4})^{20}[/tex]

- Insert ㏒ to both sides

∴ [tex]log(1.269434)=log(1+\frac{4}{n})^{20}[/tex]

∴ [tex]log(1.269434)=20log(1+\frac{4}{n})[/tex]

- Divide both sides by 20

∴ [tex]0.00518=log(1+\frac{4}{n})[/tex]

- Remember [tex]log_{a}b=c[/tex] can be written as [tex]a^{c}=b[/tex]

∵ The base of the ㏒ is 10

∴ [tex]10^{0.00518}=(1+\frac{r}{4})[/tex]

∴ [tex]1.011998806=1+\frac{r}{4}[/tex]

- Subtract 1 from both sides

∴ [tex]0.011998806=\frac{r}{4}[/tex]

- Multiply both sides by 4

∴ 0.04799522 = r

∵ r is the rate in decimal

- To find the annual rate of interest R% multiply r by 100%

∴ R% = 0.04799522 × 100% = 4.799522%

∴ R% ≅ 4.80%

The annual rate of interest is 4.80%

Learn more:

You can learn more about interest in brainly.com/question/12773544

#LearnwithBrainly