zlc7370
contestada

A store sells 2 1/4 pounds of mulch for every 1 1/2 pounds of gravel sold. The store sells 180 pounds of mulch and gravel combined. How many pounds of each item does the store sell?

Respuesta :

Answer:

The pounds of mulch the store sells are 108 and the pounds of gravel the store sells are 72.

Step-by-step explanation:

Let

x -----> pounds of mulch the store sells

y ----> pounds of gravel the store sells

we know that

[tex]x+y=180[/tex] -----> equation A

Remember that

[tex]2\frac{1}{4}\ lb=\frac{2*4+1}{4}=\frac{9}{4}\ lb[/tex]

[tex]1\frac{1}{2}\ lb=\frac{1*2+1}{2}=\frac{3}{2}\ lb[/tex]

so

[tex]\frac{x}{y}=\frac{(9/4)}{(3/2)}[/tex]

[tex]\frac{x}{y}=\frac{3}{2}[/tex]

[tex]x=\frac{3}{2}y[/tex] -----> equation B

solve the system by substitution

substitute equation B in equation A

[tex]\frac{3}{2}y+y=180[/tex]

solve for y

[tex]\frac{5}{2}y=180[/tex]

[tex]y=180(2)/5\\y=72[/tex]

Find the value of x

[tex]x=\frac{3}{2}(72)=108[/tex]

The solution is the ordered pair (108,72)

therefore

The pounds of mulch the store sells are 108 and the pounds of gravel the store sells are 72.