Respuesta :

Answer:

The given equation has two solutions i.e  [tex]\frac{-1+\sqrt{13} }{3}[/tex] ,  [tex]\frac{-1-\sqrt{13} }{3}[/tex]

Step-by-step explanation:

The given expression as :

3 x² + 2 x - 4

For the quadratic equation in the form of a x² + b x + c , the value of x

x = [tex]\frac{-b\pm \sqrt{b^{2}-4\times a\times c}}{2\times a}[/tex]

Or, x =  [tex]\frac{-2\pm \sqrt{2^{2}-4\times 3\times (-4)}}{2\times 3}[/tex]

Or, x = [tex]\frac{-2\pm \sqrt{4 + 48}}{6}[/tex]

or, x = [tex]\frac{-2\pm \sqrt{52}}{6}[/tex]

∴ x = [tex]\frac{-1\pm \sqrt{13}}{3}[/tex]

Or, x = [tex]\frac{-1+\sqrt{13} }{3}[/tex] ,  [tex]\frac{-1-\sqrt{13} }{3}[/tex]

Hence The given equation has two solutions i.e  [tex]\frac{-1+\sqrt{13} }{3}[/tex] ,  [tex]\frac{-1-\sqrt{13} }{3}[/tex]  Answer