given right triangle ABC, where angle m ‹A is equal to 45 °, m‹ B = 45°, m‹C=90° solve

3. a=_____________ b=8√3 c=________

4. a=________ b=__________ c=4​

given right triangle ABC where angle m A is equal to 45 m B 45 mC90 solve3 a b83 c4 a b c4 class=

Respuesta :

Answer:

A ) a = 8[tex]\sqrt{3}[/tex]  , c = 8[tex]\sqrt{6}[/tex]

B ) a = 2[tex]\sqrt{2}[/tex] ,  b = 2[tex]\sqrt{2}[/tex]  

Step-by-step explanation:

Given as :

A ) ABC is right triangle , right angle at c

So, ∠ C = 90°

And ∠ A = 45°   ,  ∠ B = 45°

And BC = a , CA = b , AB = c

measure of side b = 8[tex]\sqrt{3}[/tex]

Now, from right angle triangle ABC

Tan ∠ C = [tex]\dfrac{\textrm Perpendicular}{\textrm Base}[/tex]

Or, Tan 45° =  [tex]\dfrac{\textrm a}{\textrm b}[/tex]

or, 1 =  [tex]\dfrac{\textrm a}{\textrm8[tex]\sqrt{3}[/tex] }[/tex]

a = 8[tex]\sqrt{3}[/tex]

Now, c² = a² + b²

Or, c² = ( 8[tex]\sqrt{3}[/tex] )² + (8[tex]\sqrt{3}[/tex] )²

Or, c = 8[tex]\sqrt{6}[/tex]

Again

B ) c = 4

So, Sin ∠ A = [tex]\dfrac{\textrm Perpendicular}{\textrm Hypotenuse}[/tex]

or , Sin 45° =  [tex]\dfrac{\textrm a}{\textrm 4}[/tex]

Or , a = 4 × Sin 45°

∴    a = 4 ×[tex]\frac{1}{\sqrt{2} }[/tex]

I.e a = 2[tex]\sqrt{2}[/tex]

Now , b² =  c² - a²

Or,  b² = 4² - (2[tex]\sqrt{2}[/tex])²

Or,   b² = 16 - 8 = 8

Or , b = 2[tex]\sqrt{2}[/tex]

Hence the solution of given expression

A ) a = 8[tex]\sqrt{3}[/tex]  , c = 8[tex]\sqrt{6}[/tex]

B ) a = 2[tex]\sqrt{2}[/tex] ,  b = 2[tex]\sqrt{2}[/tex]     Answer