find side AB
14()
24()
33()
40()

Answer:
[tex]AB=DC=32\ units[/tex]
[tex]AD=BC=24\ units[/tex]
Step-by-step explanation:
we know that
In a parallelogram, opposite sides are parallel and congruent
In this problem we have a parallelogram
so
[tex]DC=AB[/tex]
[tex]AD=BC[/tex]
substitute the given values
[tex]5x-18=2x+12[/tex]
[tex]5x-2x=12+18[/tex]
[tex]3x=30[/tex]
[tex]x=10[/tex]
Find the length of side AB
[tex]AB=2x+12[/tex]
substitute the value of x
[tex]AB=2(10)+12=32\ units[/tex]
Find the length of side CB
[tex]BC=3x-6[/tex]
substitute the value of x
[tex]BC=3(10)-6=24\ units[/tex]
therefore
[tex]AB=DC=32\ units[/tex]
[tex]AD=BC=24\ units[/tex]