Respuesta :

Answer:

The integers are -13 and -12

Step-by-step explanation:

Let

x ----> the first consecutive negative integer

x+1 ----> the second consecutive negative integer

we know that

[tex]x(x+1)=156[/tex]

Apply the distributive property

[tex]x^2+x=156\\x^2+x-156=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^2+x-156=0[/tex]  

so

[tex]a=1\\b=1\\c=-156[/tex]

substitute in the formula

[tex]x=\frac{-1(+/-)\sqrt{1^{2}-4(1)(-156)}} {2(1)}[/tex]

[tex]x=\frac{-1(+/-)\sqrt{625}} {2}[/tex]

[tex]x=\frac{-1(+/-)25} {2}[/tex]

[tex]x_1=\frac{-1(+)25} {2}=12[/tex]  ----> the solution cannot be a positive number

[tex]x_1=\frac{-1(-)25} {2}=-13[/tex]

therefore

[tex]x=-13\\x+1=-12[/tex]