Respuesta :

Area of a regular pentagon with a side of 10in  is 172

Step-by-step explanation:

Given:

Side of the regular pentagon = 10in

To Find:

Area of the regular pentagon=?

Solution:

We know that ,

[tex]Area of Pentagon = 5\times\text{ Area of triangle}[/tex]................(1)

Step 1: Finding the Area of the triangle

we know that in a right angle triangle, there are base, height and hypotenuse  [tex]tan(\frac{\pi}{5}) =\frac{ height}{hypotenuse }[/tex]

So, from the above equation,  

[tex]height=\frac{(base/2)}{tan(36^{\circ})}[/tex]

[tex]height=\frac{5}{tan(36)}=6.88[/tex]

area of right angle triangle

=> [tex]\frac{1}{2}\times base \times height[/tex]

=> [tex]=\frac{1}{2} \times 5\times 6.88[/tex]

=> 17.20

Area of the triangle =2 x area of right angle triangle

Area of the triangle =2 x  17.20

Area of the triangle= 34.40

Step 2: Finding the Area of the pentagon

Substituting the values in (1)

[tex]Area of Pentagon = 5\times 34.40 [/tex]

Area of Pentagon= 172