Respuesta :
Answer:
- Third option: The 2 in the numerator should be –2.
Explanation:
These are the steps made by Zacharias:
- Quadratic formula:
- [tex]x=\frac{-b+/-\sqrt{b^2-4(a)(c)} }{2a}[/tex]
- [tex]x=\frac{-5+/-\sqrt{5^2-4(2)(-3)} }{2(-2)}[/tex]
The equation to be solved using the quadratic formula is:
- [tex]0=-2x^2+5x-3[/tex]
The parameters a, b, and c used in the quadratic formula correspond to the parameters in the general form:
- [tex]ax^2+bx+c=0[/tex]
Thus, you have:
- [tex]a=-2,b=5,c=-3[/tex]
And when you substitute you get:
- [tex]x=\frac{-5+/-\sqrt{(-5)^2-4(-2)(-3)} }{2(-2)}[/tex]
- [tex]x=\frac{-5+/-\sqrt{(5)^2-4(-2)(-3)} }{2(-2)}[/tex]
(since the -5 in the radicand is raised to an even power, you can omit the negative sign).
Now you can see that the error that Zacharias made was that the 2 in the numerator (in the radicand) should be - 2.