Respuesta :
Answer:
tanΘ = [tex]\frac{15}{8}[/tex]
Step-by-step explanation:
Using the trigonometric identities
tan x = [tex]\frac{sinx}{cosx}[/tex]
sin²x + cos²x = 1 ⇒ sin x = ± [tex]\sqrt{1-cos^2x}[/tex]
Since 180° < Θ < 270° then sinΘ < 0 and tanΘ > 0
sinΘ = - [tex]\sqrt{1-(-8/17)^2}[/tex] = - [tex]\sqrt{1-\frac{64}{289} }[/tex] = - [tex]\sqrt{\frac{225}{289} }[/tex] = - [tex]\frac{15}{17}[/tex]
Hence
tanΘ = [tex]\frac{-\frac{15}{17} }{\frac{-8}{17} }[/tex] = - [tex]\frac{15}{17}[/tex] × - [tex]\frac{17}{8}[/tex] = [tex]\frac{15}{8}[/tex]
Answer:
15/8.
Step-by-step explanation:
This angle is in the third quadrant in which the cosine is negative and the tangent is positive.
The opposite side in the triangle formed = √(17)^2 - (-8)^2)
= √(225)
= 15
So tan θ = 15/8
= 15/8.