Respuesta :

Answer:

see explanation

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Calculate m using the slope formula

m = (y₂ - y₁ ) / (x₂ - x₁ )

with (x₁, y₁ ) = (2, 7) and (x₂, y₂ ) = (4, 6) ← 2 points on the line

m = [tex]\frac{6-7}{4-2}[/tex] = - [tex]\frac{1}{2}[/tex]

Note the line crosses the y- axis at (0, 8) ⇒ c = 8

y = - [tex]\frac{1}{2}[/tex] x + 8 ← equation of line

Answer : The slope of the line and equation of the line is, [tex]\frac{-1}{2}[/tex]  and [tex]y=\frac{-1}{2}x+8[/tex] respectively.

Step-by-step explanation :

The general form for the formation of a linear equation is:

[tex](y-y_1)=m\times (x-x_1)[/tex] .............(1)

where,

x and y are the coordinates of x-axis and y-axis respectively.

m is slope of line.

First we have to calculate the slope of line.

Formula used :

[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]

Here,

[tex](x_1,y_1)=(2,7)[/tex] and [tex](x_2,y_2)=(4,6)[/tex]

[tex]m=\frac{(6-7)}{4-2)}[/tex]

[tex]m=\frac{-1}{2}[/tex]

Now put the value of slope in equation 1, we get the linear equation.

[tex](y-y_1)=m\times (x-x_1)[/tex]

[tex](y-7)=\frac{-1}{2}\times (x-2)[/tex]

[tex]y-7=\frac{-1}{2}x+1[/tex]

[tex]y=\frac{-1}{2}x+1+7[/tex]

[tex]y=\frac{-1}{2}x+8[/tex]

Thus, the slope of the line and equation of the line is, [tex]\frac{-1}{2}[/tex]  and [tex]y=\frac{-1}{2}x+8[/tex] respectively.

Ver imagen Alleei