Answers:
a) [tex]8820 m/s[/tex]
b) [tex]189500 Pa[/tex]
Explanation:
We have the following data:
[tex]t=30 min \frac{60 s}{1 min}=1800 s[/tex] is the time
[tex]h=11 m[/tex] is the height the water reaches vertically
[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity
[tex]P_{air}=101.3 kPa=101.3(10)^{3} Pa[/tex] is the pressure of air
[tex]\rho_{water}=1000 kg/m^{3}[/tex] is the density of water
Knowing this, let's begin:
Here we will use the following equation:
[tex]h=h_{o}+V_{o}t-\frac{g}{2}t^{2}[/tex] (1)
Where:
[tex]h_{o}=0 m[/tex] is the initial height of water
[tex]V_{o}[/tex] is the initial speed of water
Isolating [tex]V_{o}[/tex]:
[tex]V_{o}=\frac{1}{t}(h+\frac{g}{2}t^{2})[/tex] (2)
[tex]V_{o}=\frac{1}{1800 s}(11 m+\frac{9.8 m/s^{2}}{2}(1800 s)^{2})[/tex]
[tex]V_{o}=8820.006 m/s \approx 8820 m/s[/tex] (3)
In this part we will use the following equation:
[tex]P=\rho_{water} g d + P_{air}[/tex] (4)
Where:
[tex]P[/tex] is the absolute pressure in the chamber
[tex]d=9 m[/tex] is the depth
[tex]P=(1000 kg/m^{3})(9.8 m/s^{2})(9 m) + 101.3(10)^{3} Pa[/tex]
[tex]P=189500 Pa[/tex] (5)