What is the solution to the following system of equations?

x − 4y = 6
2x + 2y = 12

answer choices
(0,10)
(10,0)
(6,0)
(0,6)

Respuesta :

Answer:

The answer to your question is (6, 0)

Step-by-step explanation:

Solve the system of equations by elimination

                                  x -  4y = 6             (I)

                                2x + 2y = 12            (II)

Multiply (II) by 2

                                  x  - 4y =   6

                                4x + 4y = 24

Simplify

                                5x  + 0  = 30

Find x

                                5x = 30

                                  x = 30/ 5

                                  x = 6

Find "y"

                              6 - 4y = 6

                              -4y = 6 - 6

                              -4y = 0

                                 y = 0/-4

                                 y = 0

Answer:

(6,0)

Step-by-step explanation:

Given equations are:

\[x - 4y = 6\]         -------------------- (1)

\[2x + 2y = 12\]    -------------------- (2)

Multiplying (1) by 2 :

\[2x - 8y = 12\]     -------------------- (3)

Calculating (2) - (3) :

\[2x + 2y -2x + 8y = 12 - 12\]

=> \[10y =0\]

=> \[y = 0\]

Substituting the value of y in (1):

\[ x  = 6 \]

So the required solution of the system of equations is x=6,y=0. This can be alternatively expressed in coordinate notation as (6,0).