Answer:
a) [tex]P(-1.45<Z<1.45)=0.853[/tex]
b) [tex]P(-1.63<Z<1.63)=0.8968[/tex]
c) [tex]P(-1.48<Z<1.48)=0.8612[/tex]
d) [tex]P(-1.37<Z<1.37)=0.8294[/tex]
Step-by-step explanation:
To find : Determine the area under the standard normal curve that lies ?
Solution :
a) In between Z=-1.45 and Z=1.45
i.e. [tex]P(-1.45<Z<1.45)[/tex]
Now, [tex]P(-1.45<Z<1.45)=P(Z<1.45)-P(Z<-1.45)[/tex]
Using Z-table,
[tex]P(-1.45<Z<1.45)=0.9265-0.0735[/tex]
[tex]P(-1.45<Z<1.45)=0.853[/tex]
b) In between Z=-1.63 and Z=1.63
i.e. [tex]P(-1.63<Z<1.63)[/tex]
Now, [tex]P(-1.63<Z<1.63)=P(Z<1.63)-P(Z<-1.63)[/tex]
Using Z-table,
[tex]P(-1.63<Z<1.63)=0.9484-0.0516[/tex]
[tex]P(-1.63<Z<1.63)=0.8968[/tex]
c) In between Z=-1.48 and Z=1.48
i.e. [tex]P(-1.48<Z<1.48)[/tex]
Now, [tex]P(-1.48<Z<1.48)=P(Z<1.48)-P(Z<-1.48)[/tex]
Using Z-table,
[tex]P(-1.48<Z<1.48)=0.9306-0.0694[/tex]
[tex]P(-1.48<Z<1.48)=0.8612[/tex]
d) In between Z=-1.37 and Z=1.37
i.e. [tex]P(-1.37<Z<1.37)[/tex]
Now, [tex]P(-1.37<Z<1.37)=P(Z<1.37)-P(Z<-1.37)[/tex]
Using Z-table,
[tex]P(-1.37<Z<1.37)=0.9147-0.0853[/tex]
[tex]P(-1.37<Z<1.37)=0.8294[/tex]