Answer: 72.4 kJ/mol
Explanation:
The balanced chemical reaction is,
[tex]C_3H_8(g)+5O_2(g)\rightarrow 3CO_2(g)+4H_2O(l)[/tex] Â [tex]\Delta H=-2220.1kJ/mol[/tex]
The expression for enthalpy change is,
[tex]\Delta H=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)][/tex]
[tex]\Delta H=[(n_{CO_2}\times \Delta H_{CO_2})+(n_{H_2O}\times \Delta H_{H_2O})]-[(n_{O_2}\times \Delta H_{O_2})+(n_{C_3H_8}\times \Delta H_{C_3H_8})][/tex]
where,
n = number of moles
[tex]\Delta H_{O_2}=0[/tex] (as heat of formation of substances in their standard state is zero
Now put all the given values in this expression, we get
[tex]-2220.1=[(3\times -393.5)+(4\times -241.8)]-[(5\times 0)+(1\times \Delta H_{C_3H_8})][/tex]
[tex]\Delta H_{C_3H_8}=72.4kJ/mol[/tex]
Therefore, the heat of formation of propane is 72.4 kJ/mol