Answer:[tex]2.04\times 10^{-5}/K[/tex]
Explanation:
Given
initial volume [tex]V_0=1000 cm^3[/tex]
initial Temperature [tex]T_i=0.3^{\circ}C[/tex]
Final Temperature [tex]T_f=52^{\circ}C[/tex]
Volume of overflow of mercury[tex]=8.25 cm^3[/tex]
We know volume expansion of Mercury [tex]\beta _{Hg}=1.80\times 10^{-4} /K[/tex]
Volume Expansion of Mercury
[tex]V_f=V_0(1+\beta _{Hg}\Delta T)[/tex]
[tex]V_f=1000(1+1.80\times 10^{-4}\times 51.7)[/tex]
[tex]V_f=1009.306 cm^3[/tex]
therefore volume Expansion of flask
[tex]V_f-8.25=1009.306-8.25=1001.056 cm^3[/tex]
Volume Expansion of Glass
[tex]V_f'=V_0(1+\beta _{glass}\Delta T)[/tex]
[tex]1001.056=1000(1+\beta _{glass}\times 51.7)[/tex]
[tex]1.001056=1+\beta _{glass}\times 51.7[/tex]
[tex]\beta _{glass}\times 51.7=0.001056[/tex]
[tex]\beta _{glass}=\frac{0.001056}{51.7}=2.04\times 10^{-5}/K[/tex]