Respuesta :
Answer:u=66.67 m/s
Explanation:
Given
mass of meteor [tex]m=2.5 gm\approx 2.5\times 10^{-3} kg[/tex]
velocity of meteor [tex]v=40km/s \approx 40000 m/s[/tex]
Kinetic Energy of Meteor
[tex]K.E.=\frac{mv^2}{2}[/tex]
[tex]K.E.=\frac{2.5\times 10^{-3}\times (4000)^2}{2}[/tex]
[tex]K.E.=2\times 10^6 J[/tex]
Kinetic Energy of Car
[tex]=\frac{1}{2}\times Mu^2[/tex]
[tex]=\frac{1}{2}\times 900\times u^2[/tex]
[tex]\frac{1}{2}\times 900\times u^2=2\times 10^6 [/tex]
[tex]900\times u^2=4\times 10^6[/tex]
[tex]u^2=\frac{4}{9}\times 10^4[/tex]
[tex]u=\frac{2}{3}\times 10^2[/tex]
[tex]u=66.67 m/s[/tex]
Answer:
v = 67 m/s
Explanation:
The meteor has a mass (m) of 2.5 g and a speed (v) of 40 km/s. In SI units:
2.5 g × (1 kg / 10³ g) = 2.5 × 10⁻³ kg
40 km/s × (10³ m / 1 km) = 4.0 × 10⁴ m/s
The kinetic energy (KE) is:
KE = 1/2 × m × v² = 1/2 × (2.5 × 10⁻³ kg) × (4.0 × 10⁴ m/s)² = 2.0 × 10⁶ J
A 900 kg compact car, with the same kinetic energy, must have the following speed.
KE = 1/2 × m × v²
2.0 × 10⁶ J = 1/2 × 900 kg × v²
v = 67 m/s