While visiting the Albert Michelson exhibit at Clark University, you notice that a chandelier (which looks remarkably like a simple pendulum) swings back and forth in the breeze once every T = 6.2 seconds.
Randomized VariablesT = 6.2 seconds
(a) Calculate the frequency of oscillation (in Hertz) of the chandelier.
(b) Calculate the angular frequency ω of the chandelier in radians/second. sig.gif?tid=2N74-08-DD-43-8D37-13518No Attempt No Attempt25% Part (c) Determine the length L in meters of the chandelier. sig.gif?tid=2N74-08-DD-43-8D37-13518No Attempt No Attempt25% Part (d) That evening, while hanging out in J.J. Thompson’s House O’ Blues, you notice that (coincidentally) there is a chandelier identical in every way to the one at the Michelson exhibit except this one swings back and forth 0.11 seconds slower, so the period is T + 0.11 seconds. Determine the acceleration due to gravity in m/s2 at the club.

Respuesta :

Answer:

a) 0,1613 Hz

b) 1,01342 rad/sec

c) 9.5422 m

d) [tex]9.4314 m/sec^2[/tex]

Explanation:

In the Albert Michelson exhibit at Clark University, we know the period of oscillation of the chandelier is T = 6.2 seconds

The chandelier will be modeled as a simple pendulum

a) Since the frequency is the reciprocal of the period, we have

[tex]f=\frac{1}{T}=\frac{1}{6.2sec}=0,1613 Hz[/tex]

b) The angular frequency is computed as

[tex]w=2\pi f=2\pi (0,1613) = 1,01342\ rad/sec[/tex]

c) The period of a simple pendulum is given by

[tex]T=2\pi \sqrt{\frac{L}{g}}[/tex]

Where L is its length and g is the local acceleration of gravity (assumed 9.8 [tex]m/sec^2[/tex] for this part)

We want to know the length of the pendulum, so we isolate L

[tex]L=\frac{T^2g}{4\pi^2}[/tex]

[tex]L=\frac{(6.2)^2(9.8))}{4\pi^2}=9.5422 m[/tex]

d) While hanging out in J.J. Thompson’s House O’ Blues, the new period is 6.2+0.11=6.32 sec. Since the chandelier is the very same (same length), we can assume the gravity is slightly different. We use again the formula for T, but now we'll isolate g as follows

[tex]g=\frac{4\pi^2L}{T^2}=\frac{4\pi^2(9.5422m))}{(6.32sec)^2}[/tex]

Which results  

[tex]g=9.4314\ m/sec^2[/tex]

The frequency of oscillation of the chandelier in Hertz will be 0.1613 Hertz

How to calculate frequency?

The frequency of oscillation of the chandelier will be calculated thus:

= 1/T = 1/6.2 = 0.1613 Hz

The angular frequency will be:

= 2πf = 2π × 0.1613 = 1.01342 rad/sec

The length of the simple pendulum will be:

= T²g/4π²

= (6.2)²(9.8) / 4π².

= 9.5422m

Learn more about frequency on:

https://brainly.com/question/254161