Two particles of equal masses (m=5.5x10-15 kg) are released from rest with a distance between them equal to 1 m. If particle A has a charge of 12 μC and particle B has a charge of 60 μC, what is the speed of particle B at the instant when the particles are 3m apart?

Respuesta :

To solve this problem it is necessary to apply the law of conservation of Energy and the law of Coulomb.

This way we have to

[tex]\Delta EE = \Delta KE[/tex]

Where,

[tex]\Delta EE[/tex] = Potential Electric Energy

[tex]\Delta KE =[/tex] Kinetic Energy

Therefore,

[tex]\frac{kq_Aq_B}{d}-\frac{kq_Aq_B}{d'}= \frac{1}{2}mv^2+\frac{1}{2}mv^2[/tex]

[tex]\frac{kq_Aq_B}{d} = \frac{kq_Aq_B}{d'}+mv^2[/tex]

Replacing we have that

[tex]\frac{(9*10^9)(12*10^{-6})(60*10^{-6})}{1}=\frac{(9*10^9)(12*10^{-6})(60*10^{-6})}{3}+5.5*10^{-15}v^2[/tex]

[tex]5.5*10^{-15}*v^2 = \frac{(9*10^9)(12*10^{-6})(60*10^{-6})}{1}-\frac{(9*10^9)(12*10^{-6})(60*10^{-6})}{3}[/tex]

[tex]v = 2.8*10^7m/s[/tex]

Therefore the speed of particle B at the instant is [tex]2.8*10^7m/s[/tex]