Respuesta :
Answer:
[tex]\Delta V=0.0592\ L[/tex]
Explanation:
Given:
- Initial temperature of the coolant, [tex]T_f=95^{\circ}C[/tex]
- final temperature of the coolant, [tex]T_f=105^{\circ}C[/tex]
- total volume of the coolant, [tex]V_c=16\ L[/tex]
- coefficient of volume expansion for coolant, [tex]\beta_c=410\times 10^{-6}\ ^{\circ}C^{-1}[/tex]
- volume of Al radiator, [tex]V_a=2\ L[/tex]
- volume of steel radiator, Â [tex]V_s=14\ L[/tex]
We have:
coefficient of volume expansion for Aluminium, [tex]\beta_a=75\times 10^{-6}\ ^{\circ}C^{-1}[/tex]
coefficient of volume expansion for steel, [tex]\beta_a=35\times 10^{-6}\ ^{\circ}C^{-1}[/tex]
Now, change in volume of the coolant after temperature rises:
[tex]\Delta V_c=V_c.\beta_c.\Delta T[/tex]
[tex]\Delta V_c=16\times 410\times 10^{-6}\times (105-95)[/tex]
[tex]\Delta V_c=0.0656\ L[/tex]
Now, volumetric expansion in Aluminium radiant:
[tex]\Delta V_a=V_a.\beta_a.\Delta T[/tex]
[tex]\Delta V_a=2\times 75\times 10^{-6}\times (105-95)[/tex]
[tex]\Delta V_a=0.0015\ L[/tex]
Now, volumetric expansion in steel radiant:
[tex]\Delta V_s=V_s.\beta_s.\Delta T[/tex]
[tex]\Delta V_s=14\times 35\times 10^{-6}\times (105-95)[/tex]
[tex]\Delta V_s=0.0049\ L[/tex]
∴Total extra accommodation volume created after the expansion:
[tex]V_X=\Delta V_s+\Delta V_a[/tex]
[tex]V_X=0.0049+0.0015[/tex]
[tex]V_X=0.0064\ L[/tex]
Hence, the volume that will overflow into the small reservoir will be the volume of coolant that will be extra after the expanded accommodation in the radiator.
[tex]\Delta V=\Delta V_c-\Delta V_X[/tex]
[tex]\Delta V=0.0656-0.0064[/tex]
[tex]\Delta V=0.0592\ L[/tex]