contestada

A 15.2-mH inductor carries a current i = Imax sin ωt, with Imax = 4.60 A and f = ω/2π = 60.0 Hz. What is the self-induced emf as a function of time? (Express your answer in terms of t where is in volts and t is in seconds. Do not include units in your expression.)

Respuesta :

Answer:

[tex]e = 8.39\pi cos (120 \pi t)[/tex]

Explanation:

given,                                                  

Inductance of the inductor = 15.2 mH

i = Imax sin ωt                    

Imax = 4.60 A                

f = ω/2π = 60.0 Hz          

ω = 120 π                    

i = 4.6 sin (120π) t                

[tex]e = -L \dfrac{di}{dt}[/tex]        

[tex]e = - 15.2 \times 10^{-3} \dfrac{d}{dt}(4.6 sin (120 \pi t))[/tex]

[tex]e = - 15.2 \times 10^{-3}\times 4.6 (-120\pi cos (120 \pi t))[/tex]

[tex]e = 8.39\pi cos (120 \pi t)[/tex]                      

the self induced emf as a function of time t is equal to [tex]e = 8.39\pi cos (120 \pi t)[/tex]