Answer:
T = 0.141 s
Explanation:
given,
Battery emf = 240 V
Current after long time = 25 A
increasing rate of current = 20 A/s
time = ?
after long time
V = I R
[tex]R = \dfrac{V}{I}[/tex]
[tex]R = \dfrac{240}{25}[/tex]
R = 9.6 Ω
Voltage across inductor when I = 3 A
Voltage = 240 - 3 x 9.6
Voltage across inductor = 211.2 V
[tex]V = L \dfrac{di}{dt}[/tex]
[tex]211.2 = L \times 20[/tex]
L = 10.56 H
time constant
[tex]\tau = \dfrac{L}{R}[/tex]
[tex]\tau = \dfrac{10.56}{9.6}[/tex]
[tex]\tau =1.1\ s[/tex]
now,
[tex]i = i_0 (1 - e^{\dfrac{-T}{\tau}})[/tex]
[tex]3 = 25(1 - e^{\dfrac{-T}{1.1}})[/tex]
[tex]e^{\dfrac{-T}{1.1}}= 0.88[/tex]
taking log both side
[tex]\dfrac{-T}{1.1}= -0.128[/tex]
  T = 0.141 s