Respuesta :

Answer:

sec squared 55 – tan squared 55  = 1

Explanation:

Given, sec square 55 – tan squared 55

We know that,

[tex]\sec \Theta=\frac{\text {hypotenuse}}{\text {base}}[/tex]

And,

[tex]\tan \theta=\frac{\text { perpendicular }}{\text { base }}[/tex]

where Ө is the angle

Substituting the values

[tex]\left(\frac{\text {hypotenuse}}{\text {base}}\right)^{2}-\left(\frac{\text { perpendicular }}{\text {base}}\right)^{2}[/tex]

Solving,

[tex]\frac{(\text {hypotenuse})^{2}-(\text {perpendicular})^{2}}{(\text {base}) *(\text {base})}[/tex]

According to Pythagoras theorem,

[tex]\text { (hypotenuse) }^{2}-\text { (perpendicular) }^{2}=(\text { base })^{2}[/tex]

Putting this in the equation;

squared 55 - tan squared 55 =

[tex]\frac{(\text {hypotenuse})^{2}-(\text {perpendicular})^{2}}{(\text {base}) *(\text {base})}=\frac{(\text {base})^{2}}{(\text {base}) *(\text {base})}=1[/tex]

Therefore, sec squared 55 – tan squared 55 = 1