Respuesta :

Answer:

The second expression is not equivalent to the initial expression.

Step-by-step explanation:

Given: [tex]$ \frac{1}{5}g - \frac{1}{10} -g + 1\frac{3}{10}g - \frac{1}{10} $[/tex].

Clubbing the co-efficient of g and constant terms. we get:

[tex]$ \frac{1}{10}g + (-1)g + 1\frac{3}{10}g + -\frac{1}{10} + - \frac{1}{10} $[/tex]

This is the first step and is equivalent to the initial expression.

Now, Simplifying the above expression we have:

[tex]$ \frac{1}{5}g - g + \frac{13}{10}g + (- \frac{2}{10} )$[/tex]

⇒ [tex]$ ( \frac{1}{5} - 1 + \frac{13}{10}) g $[/tex]

⇒ [tex]$ g (\frac{2 -10 + 13}{10}) - \frac{2}{10} $[/tex]

⇒[tex]$ \frac{5}{10}g - \frac{2}{10} $[/tex]

⇒ [tex]$ \frac{1}{2}g - \frac{1}{5} $[/tex]

This is not the second step done by him. Not equivalent to the initial step.