Answer:
40 pounds
Step-by-step explanation:
Given: Cost of a candy [tex](c_1)[/tex]= [tex]\$ 12[/tex] per pound
Cost of candy [tex](c_2) = \$ 19\ per\ pound[/tex]
Total amount of mixture of be produced = [tex]70\ pound[/tex]
Selling price of mixture = [tex]\$ 15 \ per\ pound[/tex]
Let´s x be the amount of [tex]c_1 [/tex] to be mixed in the mixture.
∴ Cost of [tex]c_1[/tex] in the mixture = 12x
Next, Cost of [tex]c_2[/tex] in the mixture = [tex](70 - x)\times 19[/tex]
And we know the cost of final mixture = [tex]70 \times 15 = 1050[/tex]
Now, putting all the value in the equation
⇒ [tex]12x + 19 \times (70 - x) = 1050[/tex]
⇒ [tex]1330 - 7x = 1050[/tex]
⇒ [tex]-7x = -280[/tex]
∴ [tex]x = 40\ pound[/tex]
∴ 40 pounds of candy worth $12 per pound to be mixed in the mixture.