Answer:
The ΔS° for this reaction is -626.22 J/K.
Explanation:
[tex]4Al(s)+3O_2\rightarrow 2Al_2O_3(s)[/tex]
The equation used to calculate ΔS° is of a reaction is: Â
[tex]\Delta S^o_{rxn}=\sum [n\times \Delta S^o_f(product)]-\sum [n\times \Delta S^o_f(reactant)][/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta S^o_{rxn}=(2 mol\times \Delta S^o_f_{(Al_2O_3(s))})-(4 mol\times \Delta S^o_f_{(Al(s))}+3 mol\times \Delta S^o_f_{(O_2(g))})[/tex]
We are given:
[tex]\Delta S^o_f_{(Al(s))}=28.3J/K mol\\\Delta S^o_f_{(O_2(g))}=205.0 J/K mol[/tex]
[tex]\Delta S^o_f_{(Al_2O_3(s))}=50.99 J/K mol[/tex]
Putting values in above equation, we get:
[tex]\Delta S^o_{rxn}=(2 mol\times 50.99 J/K mol)-(4 mol\times 28.3J/K mol-3 mol\times 205.0 J/K mol)=22.5kJ/mol[/tex]
[tex]\Delta S^o_{rxn}=-626.22 J/K[/tex]
The ΔS° for this reaction is -626.22 J/K.