Respuesta :
Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
a) Final speed
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum [tex]p_{i}[/tex] before the collision must be equal to the final momentum [tex]p_{f}[/tex] after the collision:
[tex]p_{i}=p_{f}[/tex] (1)
Being:
[tex]p_{i}=MV_{i}+mU_{i}[/tex]
[tex]p_{f}=(M+m) V[/tex]
Where:
[tex]M=480 g \frac{1 kg}{1000 g}=0.48 kg[/tex] the mas of the peregrine falcon
[tex]V_{i}=45 m/s[/tex] the initial speed of the falcon
[tex]m=240 g \frac{1 kg}{1000 g}=0.24 kg[/tex] is the mass of the pigeon
[tex]U_{i}=0 m/s[/tex] the initial speed of the pigeon (at rest)
[tex]V[/tex] the final speed of the system falcon-pigeon
Then:
[tex]MV_{i}+mU_{i}=(M+m) V[/tex] (2)
Finding [tex]V[/tex]:
[tex]V=\frac{MV_{i}}{M+m}[/tex] (3)
[tex]V=\frac{(0.48 kg)(45 m/s)}{0.48 kg+0.24 kg}[/tex] (4)
[tex]V=30 m/s[/tex] (5) This is the final speed
b) Force on the pigeon
In this part we will use the following equation:
[tex]F=\frac{\Delta p}{\Delta t}[/tex] (6)
Where:
[tex]F[/tex] is the force exerted on the pigeon
[tex]\Delta t=0.015 s[/tex] is the time
[tex]\Delta p[/tex] is the pigeon's change in momentum
Then:
[tex]\Delta p=p_{f}-p_{i}=mV-mU_{i}[/tex] (7)
[tex]\Delta p=mV[/tex] (8) Since [tex]U_{i}=0[/tex]
Substituting (8) in (6):
[tex]F=\frac{mV}{\Delta t}[/tex] (9)
[tex]F=\frac{(0.24 kg)(30 m/s)}{0.015 s}[/tex] (10)
Finally:
[tex]F=480 N[/tex]