Answer:
b. 14
Explanation:
[tex]T_{i}[/tex] = Initial temperature = 27 °C = 27 + 273 = 300 K
[tex]T_{f}[/tex] = Final temperature = 37 °C = 37 + 273 = 310 K
[tex]P_{i}[/tex] = Initial Power radiated by the object
[tex]P_{f}[/tex] = Final Power radiated by the object
We know that the power radiated is directly proportional to fourth power of the temperature. hence
[tex]\frac{P_{f}}{P_{i}} = \frac{T_{f}^{4} }{T_{i}^{4} }\\\frac{P_{f}}{P_{i}} = \frac{(310)^{4} }{(300)^{4} }\\\frac{P_{f}}{P_{i}} = 1.14\\P_{f} = (1.14) P_{i}[/tex]
Percentage increase in power is given as
[tex]\frac{(P_{f} - P_{i})\times100}{P_{i}} \\\frac{((1.14) P_{i} - P_{i})\times100}{P_{i}} \\14[/tex]