In an advertisement, a pizza shop claims its mean delivery time is 30 minutes. A consumer group believes that the mean delivery time is greater than the pizza shop claims. A random sample of 41 delivery times has a mean of 31.5 minutes with standard deviation of 3.5 minutes. Does this indicate at a 5% significance level that the mean delivery time is longer than what the pizza shop claims?

Respuesta :

Answer:

We conclude that at a 5% significance level that the mean delivery time is longer than what the pizza shop claims.

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 30 minutes

Sample mean, [tex]\bar{x}[/tex] = 31.5 minutes

Sample size, n = 41

Alpha, α = 0.05

Sample standard deviation, s = 3.5 minutes

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 30\text{ minutes}\\H_A: \mu > 30\text{ minutes}[/tex]

We use one-tailed z test to perform this hypothesis.

Formula:

[tex]z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]z_{stat} = \displaystyle\frac{31.5 - 30}{\frac{3.5}{\sqrt{41}} } = 2.744[/tex]

Now, [tex]z_{critical} \text{ at 0.05 level of significance } = 1.64[/tex]

Since,  

[tex]z_{stat} > z_{critical}[/tex]

We reject the null hypothesis and accept the alternate hypothesis.

Thus, we conclude that at a 5% significance level that the mean delivery time is longer than what the pizza shop claims.