Answer:
The answer is 123.
Step-by-step explanation:
Given that-
( [tex]x + \frac{1}{x}[/tex] ) = 3.....................(i)
To find -
( [tex]x^{5} + \frac{1 }{x^{5} }[/tex] ) = ?
Now squaring both sides of equation (i)-
( [tex]x^{2} + \frac{1}{x^{2} } + 2[/tex] ) = 9
( [tex]x^{2} + \frac{1}{x^{2} }[/tex] ) = 7....................(ii)
On cubing equation (i) both sides-
( [tex]x^{3} + \frac{1}{x^{3} } + 3 ( x + \frac{1}{x} )[/tex] ) = 27
( [tex]x^{3} + \frac{1}{x^{3} } + 3 * 3[/tex] ) = 27
( [tex]x^{3} + \frac{1}{x^{3} }[/tex] ) = 27 - 9
( [tex]x^{3} + \frac{1}{x^{3} }[/tex] ) = 18.....................(iii)
Multiply equation (i) and equation (ii)-
( [tex]x^{2} + \frac{1}{x^{2} }[/tex] ) ( [tex]x^{3} + \frac{1}{x^{3} }[/tex] ) = 7 × 18
( [tex]x^{5} + \frac{1}{x^{5} } )+ ( x + \frac{1}{x} )[/tex] = 126
( [tex]x^{5} + \frac{1}{x^{5} } ) = 126 - 3
( [tex]x^{5} + \frac{1}{x^{5} } ) = 123