Respuesta :

Answer:

The solution sets are ([tex]\frac{1}{3},\frac{5}{3}[/tex]) and (5,-3)

Explanation:

We are given two equations and we are supposed to solve these two equations and find their solutions.

x + y = 2

4[tex]y^{2}-x^{2}=11[/tex]

Substitute the first equation in the second and make it a quadratic equation in one variable.

4[tex]y^{2}-(2-y)^{2}= 11[/tex]

4[tex]y^{2}-(y^{2}-4y+4)=11[/tex]

[tex]3y^{2}+4y-4=11[/tex]

[tex]3y^{2}+4y-15=[/tex]

[tex]3y^{2}+9y-5y-15=0[/tex]

(3y-5)(y+3) = 0

y = [tex]\frac{5}{3}[/tex] or y = -3

x = [tex]\frac{1}{3}[/tex] or x = 5

The solution sets are ([tex]\frac{1}{3},\frac{5}{3}[/tex]) and (5,-3)