In the diagram below, \overline{XY}
XY
is an altitude of \triangle VWX△VWX and \overline{VX}\perp\overline{WX}
VX

WX
. If VY=3VY=3, and WY=75WY=75, what is the measure of XYXY, in simplest radical form?

Respuesta :

znk

Answer:

[tex]\boxed{15}[/tex]

Step-by-step explanation:

We can use the geometric mean theorem:

The altitude on the hypotenuse is the geometric mean of the two segments it creates.

In your triangle, the altitude is XY and the segments are VY and WY.

[tex]XY = \sqrt{VY \times WY} = \sqrt{ 3 \times 75} = \sqrt{225} = \mathbf{15}\\\text{The measure of XY is $\large \boxed{\mathbf{15}}$}[/tex]

Ver imagen znk