Respuesta :

Answer: [tex]3yz^2-5y-3z^2+7[/tex]

Step-by-step explanation:

The complete exercise is:

"The sum of two polynomials is [tex]-yz^2 -3z^2-4y + 4[/tex]. If one of the polynomials is [tex]y - 4yz^2 - 3[/tex], what is the other polynomial?"

By definition, the sum is the result of the addition.

According to the information given in the exercise, the polynomial  [tex]-yz^2 -3z^2-4y + 4[/tex] is obtained by adding the polynomial  [tex]y - 4yz^2 - 3[/tex] and another polynomial.

Then, you can find the other polynomial by subtracting  [tex]y - 4yz^2 - 3[/tex] from [tex]-yz^2 -3z^2-4y + 4[/tex]:

[tex](-yz^2 -3z^2-4y + 4)-(y - 4yz^2 - 3)[/tex]

So, the steps are:

1. You must distribute the negative sign:

[tex]=-yz^2 -3z^2-4y + 4-y + 4yz^2+ 3[/tex]

2. Finally, you need to add the like terms:

[tex]=3yz^2-5y-3z^2+7[/tex]