Respuesta :
Step-by-step explanation:
write equation in terms of x
y=(-6+3x)/12
from this equation u can see your gradient is 3/12 or 1/4
your perpendicular gradient is -1/m (m being the gradient of your main line)
so gradient of perpendicular= -4
since coordinate of main line is given, that point will also be on perpendicular.
so u have point and gradient so u can Calculate line equation
Y=MX+C
(-7)=(-4)(-1)+c
c=-11
y=-4x-11
^equation of perpendicular
Answer:
[tex]\[y=4x-3\][/tex]
Step-by-step explanation:
Equation of the given line: [tex]\[3x+12y=-6\][/tex]
Rewriting it in standard form: [tex]\[12y=-3x-6\][/tex]
=> [tex]\[y=-\frac{3}{12}x-\frac{6}{12}\][/tex]
Or, [tex]\[y=-\frac{1}{4}x-\frac{1}{2}\][/tex]
Slope of the line = [tex]\[-\frac{1}{4}\][/tex]
Slope of the perpendicular line = 4
So the equation of the perpendicular line:
[tex]\[y=4x+c\][/tex]
This passes through the point (-1,-7).Substituting in the equation:
[tex]\[-7=4*(-1)+c\][/tex]
=> [tex]\[c=-7+4\][/tex]
=> [tex]\[c=-3\][/tex]
So the equation of the line :
[tex]\[y=4x-3\][/tex]