Respuesta :
Answer:
3494444444.44444 J
-87077491.39453 J
Explanation:
M = Mass of Earth = [tex]6.371\times 10^{6}\ kg[/tex]
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
R = Radius of Earth = [tex]6.371\times 10^{6}\ m[/tex]
h = Altitude = [tex]2.87\times 10^9\ m[/tex]
m = Mass of satellite = 629 kg
v = Velocity of spacecraft = [tex]1.2\times 10^4\ km/h[/tex]
The kinetic energy is given by
[tex]K=\frac{1}{2}629\times \left(1.2\times 10^4\times \dfrac{1000}{3600}\right)^2\\\Rightarrow K=3494444444.44444\ J[/tex]
The spacecraft's kinetic energy relative to the earth is 3494444444.44444 J
Potential energy is given by
[tex]U=-\dfrac{GMm}{R_e+h}\\\Rightarrow U=-\dfrac{6.67\times 10^{-11}\times 5.97\times 10^{24}\times 629}{2.87\times 10^9+6.371\times 10^{6}}\\\Rightarrow U=-87077491.39453\ J[/tex]
The potential energy of the earth-spacecraft system is -87077491.39453 J
The kinetic energy of the spacecraft is 3.49 x 10⁹ J.
The potential energy of the earth-spacecraft system is 1.77 x 10¹³ J.
The given parameters;
- mass of the spacecraft, m = 629 kg
- speed of the spacecraft, v = 1.20 x 10⁴ km/h = 3,333.33 m/s
- height of the spacecraft, h = 2.87 x 10⁶ km = 2.87 x 10⁹ m
The kinetic energy of the spacecraft is calculated as follows;
[tex]K.E = \frac{1}{2} \times m \times v^2\\\\K.E = \frac{1}{2} \times 629 \times (3,333.33)^2\\\\K.E = 3.49 \times 10^{9} \ J[/tex]
The potential energy of the earth-spacecraft system;
P.E = mgh
P.E = (629) x (9.8) x (2.87 x 10⁹)
P.E = 1.77 x 10¹³ J.
Learn more here:https://brainly.com/question/14049224