To solve this problem it is necessary to apply the concepts related to the thermal transfer rate. In general, the transfer rate can be expressed as
[tex]\frac{Q}{t} = \frac{kA\Delta T}{L}[/tex]
Where,
k = Thermal conductivity
A = Cross-sectional area
[tex]\Delta T[/tex]= Change of temperature
L = Length
Since the two heat transfer rates are equivalent we have to:
[tex]\frac{Q_1}{t} = \frac{Q_2}{t}[/tex]
[tex]\frac{k_1A(T_2-T_1)}{L/2}=\frac{k_2A(T_1-T_2')}{L/2}[/tex]
Replacing we have,
[tex]k_1(400-T) = k_2(T-200)[/tex]
[tex]k_1(400)-k_1T=k_2T-k_2(200)[/tex]
[tex]k_1(400)+k_2(200)=(k_1+k_2)T[/tex]
[tex]T = \frac{k_1(400)+k_2(200)}{k_1+k_2}[/tex]
[tex]T = \frac{(240)(400)+(120)(200)}{240+120}[/tex]
[tex]T = 333.3°C[/tex]
Therefore the temperature where the two bars are joined together is 300°C