Let f be the function defined by f(x) = x + ln x. What is the value of c for which the instantaneous rate of change of f at x = c is the same as the average rate of change of f over [1,4]?

Respuesta :

[tex]f(x)=x+\ln x[/tex] is differentiable for all [tex]x>0[/tex], so by the mean value theorem there is some [tex]c\in[1,4][/tex] for which

[tex]f'(c)=\dfrac{f(4)-f(1)}{4-1}[/tex]

We have derivative

[tex]f'(x)=1+\dfrac1x[/tex]

so that [tex]c[/tex] satisfies

[tex]1+\dfrac1c=\dfrac{4+\ln4-1}3\implies\boxed{c=\frac3{\ln4}}[/tex]

which can be rewritten using the change of base formula, if you wish:

[tex]\dfrac3{\ln 4}=\dfrac{\ln e^3}{\ln 4}=\log_4 e^3=3\log_4e[/tex]

The value will be "C = 2.164" for which the instantaneous rate of change is similar to the average rate.

Given:

  • [tex]f(x) = x+l_n x[/tex]
  • [tex][1,4][/tex] ...(1)

Instantaneous rate of x=c is,

[tex]f'(x)_{x=c} = \frac{d}{dx} (x+ l_n x)[/tex] at x=c

             [tex]=1+\frac{1}{x}[/tex] at x=c

             [tex]=1+\frac{1}{c}[/tex] ...(2)

Now,

The average rate of change over [1, 4] will be:

→ [tex]\frac{f(4)-f(1)}{4-1}= \frac{(4+ l_n 4)-(1+l_n 1)}{3}[/tex]              

                 [tex]= \frac{4+l_n4 -1}{3}[/tex]

                 [tex]= \frac{3+l_n 4}{3}[/tex] ...(3)

Since both are equal,

From equation "2" and "3", we get

→    [tex]\frac{3+ l_n 4}{3}=1+\frac{1}{C}[/tex]

→ [tex]1+\frac{l_n 4}{3} = 1+\frac{1}{C}[/tex]

→       [tex]\frac{l_n4}{3} = \frac{1}{c}[/tex]

→        [tex]C = \frac{3}{l_n 4}[/tex]

             [tex]= \frac{3}{1.38629}[/tex]

             [tex]= 2.164[/tex]

Thus the above answer is right.

Learn more:

https://brainly.com/question/7116810