Answer:
A)
[tex]8.75\times10^{5} N[/tex]
B)
[tex]1.7\times10^{4} N[/tex]
Explanation:
[tex]d[/tex] = diameter of the spherical chamber = 5.50 m
Volume of the spherical chamber is given as
[tex]V = \frac{4\pi (\frac{d}{2} )^{3}}{3}\\ V = \frac{4(3.14) (\frac{5.50}{2} )^{3}}{3}\\V = 87.07 m^{3}[/tex]
[tex]\rho[/tex] = density of the seawater = 1025 kg m⁻³
Part A)
Force of buoyancy by seawater on the chamber is given as
[tex]F_{b} = \rho V g \\F_{b} = (1025) (87.07) (9.8)\\F_{b} = 8.75\times10^{5} N[/tex]
Part B)
[tex]T[/tex] = tension force in the cable in upward direction
[tex]m[/tex] = mass of the chamber = 87600 kg
Weight of the chamber is given as
[tex]F_{g} = mg \\[/tex]
Using equilibrium of force in the vertical direction, we have
[tex]T + F_{g} = F_{b}\\T + m g = F_{b}\\T + (87600) (9.8) = 8.75\times10^{5}\\T = 16520 N \\T = 1.7\times10^{4} N[/tex]