Respuesta :

Answer:

R= 20.88 ft

Step-by-step explanation:

See the diagram attached, this satisfies the condition, ΔKLM is enclosed in a circle of radius R.

LN=16 ft (given)

The value of KM is 2R because as the ∠KLM forms an angle of 90°, therefore, the line KM passes through the center.

Area of a triangle = [tex]\frac{1}{2} * Base * Height[/tex]

Now let's find he area of the ΔKLM=[tex]\frac{1}{2} * KM * LN[/tex]

                                                          = [tex]\frac{1}{2} * 2R* 16\\\\=16R[/tex]

Also the area can be found out by =[tex]\frac{1}{2} * KL*LM[/tex]( As KLM is a right angled triangle)

KL= KM cos 25°= 2R cos 25°

LM= KM cos 55°= 2R sin 25°

Area= [tex]\frac{1}{2}[/tex] x 2R cos 25°x 2R sin 25 °

      = [tex]R^{2}[/tex] sin 50°

[tex]R^{2}[/tex] sin 50°= 16R

R sin 50°=16

R= 20.88 ft

Ver imagen robert6121