Answer:
404.4 m
Explanation:
Converting the initial speed from km/h to m/s then
[tex]140\times \frac {1000m}{3600s}=38.88888889 m/s \approx 38.89 m/s
[/tex]
The acceleration is resolved as shown in the figure hence
deceleration of the truck along the inclined plane will be
[tex]a=-g sin \theta[/tex] where g is acceleration due to gravity
Substituting g with [tex]9.81 m/s^{2}[/tex] then
[tex]a=-9.81 m/s^{2} sin 11^{\circ}=-1.871836245\approx -1.87 m/s^{2}
[/tex]
Using kinematic equation
[tex]v^{2}=u^{2}+2as[/tex] and making s the subject then
[tex]s=\frac {v^{2}-u^{2}}{2a}[/tex] where v and u are final and initial velocities respectively
Substituting 0 for v, 38.89 m/s for u and [tex]-1.87 m/s^{2}[/tex] then
[tex]s=\frac {0^{2}-38.89^{2}}{2\times -1.87}=404.3936096 m\approx 404.4 m[/tex]