Respuesta :

Answer:

ΔBDE ≅ΔBFK by rule ASA

Step-by-step explanation:

Given [tex]BD[/tex]≅[tex]BF[/tex]

[tex]DE[/tex]⊥[tex]BC[/tex] and  [tex]FK[/tex]⊥[tex]AB[/tex]

So, ∠[tex]BDE=[/tex]∠[tex]KFB=90[/tex]°

We can see in Δ[tex]BDE[/tex] and Δ[tex]BFK[/tex]

∠[tex]DBE=[/tex]∠[tex]KBF[/tex] included angle

[tex]BDE=[/tex]∠[tex]KFB=90[/tex]° (Given)

Also, [tex]BD[/tex]≅[tex]BF[/tex] (Given)

From ASA

We can see two angles and one included side are same as corresponding triangle then,

ΔBDE ≅ΔBFK by rule ASA