Respuesta :
Answer:
Minimum speed will  be equal to 2.213 m/sec
Explanation:
We have given radius of the r = 2 m
Coefficient of friction [tex]\mu =0.25[/tex]
At minimum speed frictional force will be equal to centripetal force
So [tex]\mu mg=\frac{mv^2}{r}[/tex]
[tex]\frac{v^2}{r}=\mu g[/tex]
[tex]v=\sqrt{\mu rg}=\sqrt{0.25\times 2\times 9.8}=2.213m/sec[/tex]
So the minimum speed will be equal to 2.213 m/sec
Answer:
v = 8.9 m/s
Explanation:
1. f = mg
2. f=цn
3. mg=цn=цmv²/r
v=√(gr/ц)
v=√[(9.8 x 2) ÷ 0.25]
v=8.9 m/s