Answer: 0.98
Step-by-step explanation:
Formula to find the maximum error of the mean is given by :-
[tex]E=z*\dfrac{\sigma}{\sqrt{n}}[/tex]
, where n= sample size.
z*= Critical value.
[tex]\sigma[/tex] = Population standard deviation
As per given , we have
n= 100
[tex]\sigma= 5[/tex]
Confidence level : 95%
Critical value for 95% confidence = 1.96 [By z-table ]
Then , the maximum error of the estimated mean quality will be :
[tex]E=(1.96)\dfrac{5}{\sqrt{100}}[/tex]
[tex]E=(1.96)\dfrac{5}{10}[/tex]
[tex]E=(1.96)\dfrac{1}{2}=0.98[/tex]
Hence, the required maximum error = 0.98
Thus the correct answer is 0.98 .