Answer:
Kinetic energy will be equal to 99.13 J
Explanation:
We have given weight w = 810 N
Radius r = 1.48 m
Time t = 3.05 sec
Acceleration due to gravity [tex]g=9.8m/sec^2[/tex]
We know that weight is equal to [tex]w=mg[/tex]
So [tex]810=m\times 9.8[/tex]
m = 82.65 kg
We know torque [tex]\tau =Fr=I\alpha[/tex], here I is moment of inertia
Moment of inertia is given by
[tex]I=\frac{1}{2}mr^2=\frac{1}{2}\times 82.65\times 1.48^2=90.52kgm^2[/tex]
So [tex]90.52\times \alpha =50.5\times 1.48[/tex]
[tex]\alpha=0.8256rad/sec^2[/tex]
We have given initial angular velocity [tex]\omega _i=0rad/sec[/tex]
So [tex]\omega _f=0+0.8256\times 3.05=2.518rad/sec[/tex]
Now rotational kinetic energy is given by
[tex]ke=\frac{1}{2}I\omega ^2=\frac{1}{2}\times 90.52\times1.48^2=99.13J[/tex]